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Fractional diffusion equations are widely used to describe anomalous diffusion processes where the charac-
teristic displacement scales as a power of time. For processes lacking such scaling the corresponding descrip-
tion may be given by diffusion equations with fractional derivatives of distributed order. Such equations were
introduced in A. V. Chechkin, R. Gorenflo, and I. Sokolov [Phys. Rev. E 66, 046129 (2002)] for the descrip-
tion of the processes getting more anomalous in the course of time (decelerating subdiffusion and accelerating
superdiffusion). Here we discuss the properties of diffusion equations with fractional derivatives of the dis-
tributed order for the description of anomalous relaxation and diffusion phenomena getting less anomalous in
the course of time, which we call, respectively, accelerating subdiffusion and decelerating superdiffusion. For
the former process, by taking a relatively simple particular example with two fixed anomalous diffusion
exponents we show that the proposed equation effectively describes the subdiffusion phenomenon with diffu-
sion exponent varying in time. For the latter process we demonstrate by a particular example how the power-
law truncated Lévy stable distribution evolves in time to the distribution with power-law asymptotics and
Gaussian shape in the central part. The special case of two different orders is characteristic for the general

situation in which the extreme orders dominate the asymptotics.
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I. INTRODUCTION

“Normal” kinetic processes are described by the Fick’s
diffusion equation, a parabolic partial differential equation
for the probability density function (PDF) p(x, 1) of finding
a particle at site x at time #:

d &
Ep(x,t) = D@p(x,t), D > 0. (1)

This equation was first obtained by Fick in 1855 on the basis
of what we would now call linear response theory, and the
underlying microscopic picture was understood by Einstein
fifty years later. The diffusive behavior follows as a continu-
ous limit of random walks, in which the overall particle’s
displacement up to time ¢ can be represented as a sum of
independent random steps, in the case that both the mean
squared displacement per step and the mean time needed to
perform a step are finite. The Fick’s equation is invariant
under the scale transformation x— \x, — A%z, so that the
characteristic scale of its solution (diffusion length) grows as
Lot In many cases, however, the characteristic displace-
ment scales as

Loct* (2)

with w# 1/2 or does not scale at all. In these cases one often
speaks about anomalous kinetics. The prominent examples of
the scaling anomalous behavior are the Lévy flights and the
continuous-time random walks with power-law waiting-time
distributions (see [1,2]). These are described by fractional-
order kinetics, i.e., through diffusion equations with the frac-
tional, instead of the first- or second-order derivative in its
temporal or spatial variable, respectively. In the first case, the
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time-fractional diffusion equation with the Caputo fractional
derivative on the left-hand side,

P 7
——px,t) =D—p(x,t 3
b =D () (3)
(0<w<1/2) for subdiffusion or, in the second case, the
space-fractional diffusion equation, with the Riemann-
Liouville or Riesz derivative on the right-hand side,

9 n

Ep(x,t) = D_o’fxl/"‘p(x’ r) (4)
(u>1/2) for superdiffusion guarantee the proper scaling,
Eq. (2). However, the form with the temporal Riemann-
Liouville derivative,

(9 1—2,U,
P =D p) )
(0< u<1/2) for subdiffusion or
Pl g &
SR 5P =D 5p(x.1) (6)

(> 1/2) with the spatial Riemann-Liouville or Riesz deriva-
tive for superdiffusion, do this as well. In Egs. (3)—(6) the
fractional derivatives are meant in a generic way, to be speci-
fied later; here we only state that the ones in Egs. (5) and (6)
are conjugated to those in Egs. (3) and (4), and they are all
invariant under the scale transformation x— \x, r— \"#¢. In
Egs. (3) and (4) the fractional derivatives stand at their “cor-
rect” places, i.e., at places where the corresponding ordinary
derivative should stay in the Fick’s equation. Therefore we
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call such forms the “natural” form of fractional diffusion
equations. The forms (5) and (6) are called modified frac-
tional diffusion equations. As long as the scaling situation is
considered, the forms (3) and (5) as well as Egs. (4) and (6),
respectively, are equivalent and give rise to the same solu-
tions (under proper definition of the corresponding deriva-
tives) [3].

However, many systems demonstrate anomalous nonscal-
ing behavior, which corresponds either to crossover between
different power laws, or to a non-power-law behavior as ex-
emplified by the logarithmic growth of the distribution
width. As examples of such nonscaling situations we can
refer to truncated Lévy flights in the superdiffusive case [4,5]
and to Sinai-like superslow diffusion [6] in the subdiffusive
case. For these two examples it was shown that the behavior
of the corresponding PDFs can be described by diffusion
equations with distributed-order derivatives [7,8]. For ordi-
nary differential equations distributed-order derivatives were
originally introduced by Caputo [9-11] for generalizing
stress-strain relation of inelastic media. An example of such
diffusion equation was first discussed in [12], where the con-
nection of such equation for subdiffusion with the corre-
sponding continuous-time random walk (CTRW) scheme
was also established. The distributed-order derivative is
nothing else but a linear operator defined as a weighted sum
of different fractional derivatives or an integral of such over

their order, [ Zdﬂp(ﬁ)%i, acting on the function of the corre-
sponding variable z. In the case of distributed-order diffusion
equations z means time or space. Such equations are the
versatile instrument for the description of nonscaling anoma-
lous diffusion processes, as shown by the corresponding ex-
amples in Refs. [7,8,13,14]. Once again, depending on the
position of the fractional operator, the corresponding
distributed-order equation can be of natural or of modified
form. The natural forms were discussed in detail in our pre-
vious papers. We also note that such distributed-order frac-
tional diffusion equations find more and more interest among
“pure” mathematicians, who proved rigorously the results
stated in our previous works, and developed the correspond-
ing formalism [15-17]. Therefore in the present paper we
concentrate on the modified forms.

In the present paper we discuss the properties of such
modified equations and present generic examples elucidating
the behavior of the corresponding processes. We study the
evolution of the solutions of modified distributed order equa-
tions with both temporal and spatial fractional derivatives in
more detail, showing, e.g., the peculiarities of transformation
of the “anomalous” solution at small times into the “normal”
solution at long times.

We moreover discuss experimental findings in different
fields, such as biophysics, plasma physics, and econophysics,
where the effects of transformation from anomalous diffu-
sion behavior to a normal one are observed. Such effects can
be phenomenologically described within the framework of
distributed-order diffusion equations of modified form.

The paper consists of two large sections. In Sec. II we
consider the diffusion equation with time fractional deriva-
tive of distributed order in the right-hand side of the equa-
tion. In Sec. Il we consider the diffusion equation with
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space fractional derivative of the distributed order in the left
side of the equation. In each section a generic particular case
is considered with the weight function being a sum of two
delta functions with two different exponents, the one of them
corresponding to normal diffusion. In both sections solutions
of the Cauchy problem are obtained in the Fourier-Laplace
domain, and mean squared displacements and probability
densities to stay at the origin are evaluated.

II. MODIFIED DISTRIBUTED-ORDER TIME
FRACTIONAL DIFFUSION EQUATION

A. General equations

The time-fractional diffusion equation with a distributed-
order Riemann-Liouville derivative in the right-hand side
was introduced in [3] and reads as

| P
P apppk(p,pi2L )

E - 0 x>’
where [K(B)]=cm?/sec?, p(B) is a dimensionless non-
negative weight function, and D is the Riemann-Liouville
fractional derivative on the right semiaxis, which for a “suf-
ficiently well-behaved” function ¢(¢) is defined as follows:
1 d (" T
J 4 #(7)

D”(ﬁ:ijl_”gb: — S .
0T gy (1 - w)dt

b OS <1’
Ty K

(8)

where JY¢(t)=1/T(a) [(dr(t-7)*'f(7), t>0,acR* is
the fractional Riemann-Liouville integral. Equation (7) is
subject to the initial condition f(x,t=0)=38(x). If we set
p(B)=8(B-By),0<By<1, then we arrive at the time frac-
tional diffusion equation in the modified form,

(?_f — 1-8 ﬁ
= B B0t 0 2" (9)
at 0 ox
The way we put down Eq. (7) depending on the product
p(B)K(B) leaves some freedom in defining p(B) and K(B).
To comply with dimension of K(B) we define it as K(B)
=D7!"P, where D has a dimension of normal diffusion coef-
ficient, cm?/sec, and 7 has the dimension of time. As soon as
the numerical value of D is fixed, the value of 7is chosen in
such a way that the function p(B) is normalized, [dBp(B)
=1, and can be interpreted as a probability density. The com-
bination D, having the dimension of length, will appear
repeatedly in what follows.

We note that Eq. (7), just like Eq. (9), admits a thermo-
dynamical interpretation as a combination of a continuity
equation df/dt=—dj/dx and a retarded linear response equa-
tion j(x,)=®(1){df(x,r)/ dx} for the flux exhibiting memory
of the process at previous times ¢’ <t [18]. We point out the
analogy of this flux dependent on the past history to the flux
for a space-fractional diffusion process which is non-local in
space [19]. We also note that the natural form of a
distributed-order time-fractional diffusion equation does not
immediately allow for such a thermodynamical interpreta-
tion.
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The usual way to deal with fractional diffusion equations
is to use Fourier-Laplace transformation techniques. Apply-
ing to Eq. (7) the Laplace and Fourier transform in succes-

sion, g(s)=[gdt e'g(t), §(k)=J" dk ¢*g(x),
?(k,s) =f dx eikxf dt e *'f(x,1), (10)
—0 0

and taking into account that the Laplace transform of the
Riemann-Liouville derivative (D¥¢(t) is st(s), if J'(t
—0)=0, in particular whenever ¢(0) is finite [20-22], we
get

g e
Hks) = D (1)
where
-1
Ip(s7) = l f dp(s7)P (,8)} : (12)

Note that Eq. (11) is exactly the same as the equation for the
Fourier-Laplace transform of the solution for the natural
form, if we replace Iy, (s7) by I(s7)=] (l)dﬂ(sr)ﬁp(ﬁ), see Eq.
(6) in [12]. This gives us a solution in terms of the integral
formula of subordination, Eq. (10) of Ref. [12]. In both
cases, the one described by the modified as well as by the
natural distributed-order form, the parent process is the
Wiener process; the properties of the operational time (di-
recting process), however, are different in these two cases.
After inverse Fourier transformation of Eq. (11) we obtain

—
= 1 NIy ( Iry )

)= ——=Rlexpl = \/Roly] | 13
f(x,5) S ha s O D7|x| (13)

The fundamental solution of the Cauchy problem for the
modified distributed order equation, Eq. (7), was recently
obtained in [23,22] both in terms of the integral of a Laplace
type and in terms of a Mellin-Barnes integral. Also, a power
series for the solution comes out whose coefficients are time-
dependent functionals of the probability density p(B). In
what follows the two quantities will be of particular interest,
namely, (i) probability density to stay at the origin, which

reads as
1
{‘ RL}, (14)
K

where L' denotes an inverse Laplace transformation with
respect to the variable s, and (ii) mean squared displacement
(MSD), which is given by

&2—? ) =2D7L]'
k=0 ’

£0.0) =L;'{A(0,5)} =

1
1— . (15)

0"](2 SIRL,

(@) =L;" (—
B. Generic case of double-order equation

In what follows we consider the special form of the prob-
ability density p(B),
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In f(0,1)

Int

FIG. 1. Main figure: the probability density to stay at the origin
obtained from Eq. (18) by numerical inverse Laplace transforma-
tion is shown by dots. Parameters: 8;=0.5, B,=1, b;=b,=0.5.
Note the use of dimensionless time and space coordinates. The solid
lines show asymptotics 7~ and ocr~1/2, for small and large times,
respectively. Inset: B1.; Vs time obtained from the probability den-
sity to stay at the origin.

p(B)=B18(B-B1) +Br0(B- o) (16)

with 0<B,<pB,=1, B;>0, B,>0, B{+B,=1. The corre-
sponding diffusion equation is called double-order time-
fractional diffusion equation in what follows. This choice
allows us to show in a simple way the property of the diffu-
sive behavior governed by distributed order diffusion equa-
tions. Inserting Eq. (16) into Eq. (12) gives

IRL(ST) = (b]S_BI + bzs_ﬂz)_l, (17)

where b;=B,/1,b,=B,/ 2. The positivity of the solution
of the double-order time-fractional diffusion equation was
proved in [3]. The solution itself was obtained analytically in
Ref. [23] in terms of infinite series of the Fox functions. The
corresponding random process can be considered as an ap-
proximation for a continuous-time random walk (CTRW)
process with the waiting-time distribution function W(7)=1
—(b;™'+b,7™2)7!, and simulated accordingly. The derivation
of the corresponding modified diffusion equation from the
CTRW theory is considered in Ref. [13].

Probability density to stay at the origin. Inserting Eq. (17)
into Eq. (14) we get

1

70, 2\!DT s\Vbs™P1 4+ bys™P2
and, using Tauberian theorems [24],
( 1 —BI/Z

2\D7b1r< ,81> t—0
2

fO0=4 | s (19)

2\1D7‘b21_‘< BZ) {—

L 2

In Fig. 1 we demonstrate the evolution of f(0,7) obtained by
numerical inverse Laplace transformation [25] for 8,=0.5,
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FIG. 2. Main figure: MSD (x?) vs ¢ is shown by dots in the
log-log scale. Parameters: 8,=0.5, pfB,=1, b;=b,=0.5, D=1
=1. The solid lines show asymptotics o#~"/# and ot~/ for small
and large times, respectively. The transition from subdiffusion to
normal diffusion behavior is clearly seen. Inset: the effective diffu-
sion exponent S, obtained from the local slope of the MSD curve
is shown by the solid line. For t=1B,.4(1) =0.74. Dashed-dotted line
demonstrates B¢ from the inset of Fig. 1.

B,=1. Note that in all our figures we use dimensionless time
(measured in units of 7) and dimensionless length (measured
in units of VD7), which fixes the values of D and 7 equal to
1. The dotted curve in the main figure shows the transition
from behavior at small times where the smallest exponent
dominates, to the behavior at large times, where the largest
exponent dominates. The slopes of the dotted curve at very
small and very large times are determined by the smallest
and largest B values, respectively. The inset shows 8. de-
fined by the local slope. As we proceed to show, B.s(?)
determines the behavior of the PDF at time # with good ac-
curacy, e.g., we may look at the evolution of the probability
density to stay at the origin as governed by the exponent
Bier, Which varies in time: f(0,1) ~ tP1et®,

Mean squared displacement. Inserting Eq. (17) into Eq.
(15) gives by inverse Laplace transformation exactly

_ 2D, (t\A 2D, (z)ﬁz
_F(1+7)(> +F(1+a) r) (20)

where D;=BD7,D,=B,D7. Since 0<;<fS,=1, at small
times the first term on the right-hand side of Eq. (20) pre-
vails, whereas at large times the second one dominates. Thus
our Eq. (20) describes accelerating subdiffusion. We note
that this behavior is opposite to the case of decelerated sub-
diffusion considered in Ref. [12] [see Egs. (18) and (20)
there], where at small times the larger exponent prevails
whereas at large times the smaller one dominates.

In Fig. 2 we plot the mean squared displacement (MSD)
(x?) as function of ¢, Eq. (20), with 8,=0.5, 8,=1. The dot-
ted line in the main figure shows evolution of the MSD from
subdiffusive behavior at small times, where the smallest ex-
ponent dominates, to the normal behavior at large times,
where the largest exponent dominates. The slopes of the dot-
ted curve at very small and very large times are determined
by the smallest and largest values of 3, respectively. The
inset demonstrates the following property similar to that ob-

()

T
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served in Fig. 1: at each time instant we may evaluate some
Bacsr defined by the local slope of the MSD curve and shown
here by solid line, which governs evolution exactly at this
instant. In other words, we may look at the evolution of the
MSD as governed by the exponent S,.y, Which varies in
time: (x(t)) o tP2i)_For the comparison, in the inset B;.¢ Vs
t is depicted by the dashed-dotted line. One can see that the
behavior of both effective exponents is very similar and
leads us to the following observation: the system governed by
the distributed-order time-fractional diffusion equation with
two diffusion exponents has the properties very similar to the
system whose exponent varies in time. Up to now, we illus-
trated this statement by demonstrating the evolution of the
first return to the origin and the MSD. Now, we turn to the
PDFE.

Probability density function: Analytical results. For the
Laplace transform of the PDF we get from Eqgs. (13) and (17)

1

2\/Db27s1_ﬁ2/2 \/] N ﬁsﬂz—ﬁl
by

|X| 5182/2

flx,s) =

(21)

We begin with two degenerated cases that actually describe
single order processes.
Particular case 1: B;=3,=0, B,=£,=1. From Eq. (21)

we get
flx,s) : { \/:| I} (22)
x,5) = —=—=¢exp| — \/ =|x| |,
2\Ds P D

and, taking into account the Laplace transform pair,

r 2
e—a\‘x o _sle a“/4t
- = dt e — >
Tt

Vs 0 N

we arrive at the Gaussian law,

exp(= x*/4D1) 23)
4Dt .

Particular case 2: B;=£,=0, B,=1, B,=p=1. From Eq.
(21) we get

- / 1 |x|
flx,s) = é(sr)“ﬁ/ze)(p{_ \'%T(ST)B/Z]’ (24)

which after inverse Laplace transformation gives

fle,t) =
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fle,n) = LJ ds e”f(x,s)
2mi ) g,

= lL dS eS’_(|X‘(ST)B/2/\5D_7')
N 4D 27mi ) 5, (57)'P?
1

L B
-3 e

where

1 do M x|
M ; - — _— 0'—{0‘ S = 26
(&) 27TifHa R ¢ [DAFH2 (26)

is the integral definition of the Mainardi (M-) function, Ha
is the Hankel path [26,27]. We remind that the Hankel path is
a loop starting from —0 along the lower side of the negative
real axis, encircles the circular area |o]=&— 0 in the positive
sense, and ends at —oc along the upper side of the negative
real axis. The Mainardi function can be also defined by the
following series representation valid on the whole axis:

o * (="
M(f,ﬂ)—gn!r[_ﬂn+(l -w]

©

1o 9! .
-> I'(un)sin(un). 27)
=1 (n - l)!

Note that the case u=1/2 corresponds to
M(£;172) = Y2 exp(= H4). (28)

Thus setting S=1 in Eq. (25) and using Eq. (28) we arrive at
the Gaussian law, Eq. (23).

Let us turn back to the general equation (21) with 0
<B;1<pB,=1. We are interested in the case B,=1. Denoting
B1=B, by=bg=By/ 7, by=B/1=b, we rewrite Eq. (21) in
equivalent form,

1 1
2VDbrs"?\1 + (bﬁ/b)sl_'g

y |x| Sl/2
exp| — ] =
\D7b\1 + (bg/b)s'F

fla,s) =

|

[note that for bg=0, b=1 we again arrive at Eq. (22)]. In
accordance with the two particular cases presented above we
consider large and small s expansions of Eq. (29) and com-
pare with the particular cases 1 and 2.

Behavior for large s (small 7). From Eq. (29) we get

f( ) 1 1 { |x|sﬂ/2]
X,§) = —F——=—"T5exp| - 77—
2\Dbgrs'P? Dbt

T 1 |x|
=\/""—"""—7 - ——(sn)P? 30
4DBB(ST)1‘B/26XP{ VDB (s7 } (0

B’T

[compare with Eq. (24)]. Thus, after inverse Laplace trans-
formation, we arrive at Egs. (25) and (26) with substitution
of D by DBg:
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?)
o) = | 655 )
where
g—i Kg=DBgr'™# (32)
- \/@tﬁ’f PR

The M function exhibits stretched exponential behavior at
large values of an argument [26],

M(r/v,v) = a(v)r-12/10-7) exp[— b(v)r’1-"],  (33)

where

b(v)=

a(v)= V/m,

[note the reduced argument in Eq. (33)]. In our terms ¢
=r/v,v=/2, and Eq. (33) is written as

E) I S (3)1_/3/2_/3 (1-12-p)
M(& 2) T aB)\B -
_ BI2-B
X exp{— -5 ZB([S) (2/2_3}. (34)

Note that the asymptotics of the solution (31) and (34) was

obtained for the first time from the CTRW picture in the

problem of subdiffusion in intermittent maps [28].
Behavior for small s (large t). Small s expansion of Eq.

(29) gives
1 [ s }
——exp| — \/ |x|
2\DbTs Dbt
1 ) :|
= exp| — \/—|x (35
2\DBs p{ N D5 :

[compare with Eq. (22)]. Thus, after inverse Laplace trans-
formation, we arrive at Eq. (23), with substitution of D by
DB:

f(xvg) =~

exp(— x*/4DBi)
(x,t) ~ —F——, t—». (36)
4 \4mDBt

Probability density function: Numerical results. In nu-
merical simulation the PDF is obtained by the inverse
Laplace transformation performed numerically from Eq. (29)
with the use of the algorithm presented in [25]. The M func-
tion is calculated via its series representation, Eq. (27). In
simulations B8=0.5, D=7=1, B[;:B:O.S. The results are
shown in Figs. 3-5.

In Fig. 3 the solution of a double-order time-fractional
diffusion equation is shown at small times for three time
instants, 0.002, 0.01, and 0.1. The single-order approxima-
tion at small times, Eq. (31), is shown by solid lines for the
same instants. The approximation works well at small times.
With time increasing, the deviations between exact and ap-
proximate solutions grow and become more pronounced on
the tail of the PDF, which is clearly shown in the main figure
in a logarithmic scale.
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FIG. 3. PDFs at small times. Main figure: the inverse Laplace
transform of Eq. (29) is shown in a logarithmic scale for r=0.002,
0.01, and 0.1, respectively. The corresponding single-order approxi-
mation in terms of the M function, Eq. (31), is shown by solid lines.
It is seen that at small times the M function gives a good approxi-
mation to the exact solution, and with ¢ increasing the logarithmic
discrepancy becomes larger. In the inset the central parts of the
PDFs are shown in a linear scale.

The evolution at large times shown in Fig. 4 is in some
sense the reverse: with the time increasing the deviations
between the exact solution and its single-order Gaussian ap-
proximation, Eq. (36), decrease. Again, logarithmic scale
used in the main figure allows us to follow how the approxi-
mate solution approaches the exact one.

Approximation by single-order solution in the whole time
domain. Let us return to the observation made in numerical
simulations with probability density to stay at the origin and
with MSD, that the double-order diffusion equation has the
properties similar to that of single-order equation with expo-
nent varying with time. We pose the question: is it possible
to approximate the solution of double-order diffusion equa-

FIG. 4. PDFs at large times. Main figure: the inverse Laplace
transform of Eq. (29) is shown in a logarithmic scale for r=100,
200, and 300, respectively. The corresponding Gaussians, Eq. (36),
are shown by solid lines. It is seen that with ¢ increasing the loga-
rithmic discrepancy between Gaussian approximation and exact so-
Iution becomes smaller. In the inset the central parts of the corre-
sponding PDFs are shown in a linear scale.
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0.3

~0.2

0.1

FIG. 5. PDF obtained by inverse Laplace transformation of Eq.
(29) is shown by dots for r=1 and by squares for r/=2, in linear and
logarithmic scale in the main figure and the inset, respectively. Pa-
rameters are the same as in Figs. 3 and 4. Solid line: single-order
solution, Eq. (25), taken at t=1, with the effective values of the
parameters B and D. The former equals B;.=0.84; the value is
taken from the curve in the inset of Fig. 1 at =1, whereas the latter
D.=1.7 is chosen so as to provide the best fit to exact solution
depicted by dots. Dashed line: single-order solution, Eq. (25), taken
at t=2, with the effective value B.;=0.9, taken from the inset of
Fig. 1 at t=2; again, Dey=1.5 is chosen to provide the best fit to
exact solution depicted by squares.

tion by the solution of a single-order with time-dependent
exponent? In order to make such approximation it is reason-
able at first to have at least an empirical rule for how this
time-dependent exponent might be chosen, especially keep-
ing in mind the existence of another adjustable parameter D.
Below we present two ways to make the approximation.

The first one uses S5 defined from the probability of
first return, see Fig. 1. That is, for each time instant ¢ we
calculate the value of single-order solution, Eq. (25), with
instant value B(r)=pBx(?), the latter is determined from the
inset in Fig. 1. Then, we vary parameter D to provide the
best fit to the exact solution of double-order equation. The
result for intermediate times is shown in Fig. 5. It can be
seen, especially from the inset, that for intermediate times
the exact solution can be approximated by the single-order
solution with the effective values of B and D. Naturally,
during the time evolution, 3 varies between 0.5 and 1, and
increases as ¢ grows. The discrepancy between the exact so-
lution and its approximation becomes more visible in the
wings of the PDF shown in a logarithmic scale. In general,
we may conclude that our choice of the effective B provides
a reasonable agreement between single-order approximation
and exact solution.

Even better agreement can be achieved if we do not use
an effective value of B, but instead try to vary both param-
eters, 8 and D, in order to provide the best fit. This point is
illustrated in Fig. 6. To put the functions for #=0.001 and #
=100 on the same plot we rescale them in such a way that
the characteristic widths of the distributions W(z), defined by
I SV ® f(x,t)dx=1/4, are the same. One can see an excellent fit
to exact result. Note that the value of B, grows monoto-
nously with time, while the value of Dy exhibits a nonmo-
notonous behavior, first rising up to the value of 2 and then
decaying toward 1.
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FIG. 6. The rescaled PDF p({)=W(¢)f(x,t), where f(x,1) is ob-
tained by inverse Laplace transform of Eq. (29), is shown for dif-
ferent values of ¢ as a function of rescaled displacement ¢
=x/W(t), for different time instants, from top to bottom: r=0.001,
0.01, 0.1, 1.0, 10, and 100. The corresponding dashed lines demon-
strate the single-order solution given by Eq. (25) with the param-
eters, from top to bottom, B.;=0.5, 0.5, 0.6, 0.73, 0.8, 0.95; D
=1, 1.05, 1.7, 1.95, 2.0, 1.4.

I11. DISCUSSION

There are several observations in which subdiffusion be-
havior changes into normal one in the course of time. We
mention below some of them. In experiments [29] the La-
grangian velocity of tracer particles was measured in a tur-
bulent flow with the use of ultrasonic Doppler tracking. The
PDFs of velocity increments were almost Gaussian at inte-
gral time scales and progressively developed stretched expo-
nential tails for small time increments. This is a manifesta-
tion of intermittency. In order to explain these experiments,
in the paper [30] time-fractional single-order diffusion equa-
tion in d dimensions was obtained, starting from the Navier-
Stokes equation. Its solution was compared with the PDF
measured experimentally. It was shown that the experimental
PDF can be well reproduced at each time instant by fixing a
definite value of the fractional order exponent, which is a
free parameter of the theory. The fitting values of the expo-
nent vary between approximately 0.5 for small time and 1.0
for long time; see Fig. 1 in [30]. Our results allow us to
suggest that, in principle, another explanation could be pos-
sible, with appropriate generalization of a double-order dif-
fusion equation and its solution to a three-dimensional case.

Analysis of the mean squared displacements data from
single-particle tracking experiments with membrane-bound
proteins revealed transition from subdiffusion to normal dif-
fusion [31,32]. It was shown in [32] that this transition can
be understood in terms of subdiffusion mechanism punctu-
ated by occasional Lévy flights. Biological mechanisms of
the transition from subdiffusion at small times to normal dif-
fusion at large times are discussed in [33].

Another related example comes from the single-file diffu-
sion which occurs when particles moving in one-dimensional
space cannot pass one another. This notion was originally
introduced to describe the transport of ions through narrow
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channels in biological membranes [34]. In particular, such
kind of diffusion was also found in zeolites, which are com-
plex, crystalline inorganic materials widely used in petro-
chemical and industrial processes [35]. Recent molecular dy-
namics simulations extended to the nanosecond scale
revealed subdiffusive behavior obeying non-Gaussian statis-
tics in different crystalline microporous aluminosilicates and
demonstrated availability of fractional diffusion interpreta-
tion of simulated single-file diffusion in microporous mate-
rials [36,37]. For a comparison between the propagator ob-
tained from molecular dynamics simulations and that of a
single-order diffusion equation the instantaneous values of
fractional order and diffusion coefficients were fitted to the
simulated MSD. It was suggested in Ref. [37] that the dis-
tributed order equation may be employed for an alternative
description of the phenomenon.

At last, we note that the transition from slower subdiffu-
sion to faster subdiffusion can be seen in the measurements
of subdiffusion parameters provided in Refs. [38,39]. Indeed,
one can clearly observe in Fig. 2 from Ref. [38] that for
experiments with glucose at small times the experimentally
measured thickness of the near membrane layer as a function
of time grows slower than at long times, at which the sub-
diffusion exponent 0.9 is obtained with good accuracy.

Summarizing Sec. II, the presented analysis and the dis-
cussion allows us to conclude that the modified distributed
order time-fractional diffusion equation may be a useful tool
for the description of the phenomena demonstrating anoma-
lous subdiffusion behavior at small times and normal diffu-
sion at large times. In the next section we demonstrate how
the modified distributed-order space-fractional diffusion
equation describes transient superdiffusion phenomena.

IV. MODIFIED DISTRIBUTED-ORDER SPACE-
FRACTIONAL DIFFUSION EQUATION

A. General equations

Let us consider the diffusionlike equation with an addi-
tional distributed-order space fractional operator on the left-
hand side [3]:

2 —a
f dap(-ct P e 37
0

ﬁ|x|2‘“5 x>’

where [[]=cm, [D]=cm?/sec, and the length [ is introduced
in such a way that p(«) is a dimensionless non-negative gen-
eralized function obeying the normalization condition
) édap(a)= 1, possibly having delta points in 0 <a =2, but
not at @=0. Here, d*/d|x|* denotes a symmetric Riesz de-
rivative (we adopt here the notation introduced in [40]),
which, for a “sufficiently well-behaved” function ¢(x) is de-
fined through the Liouville-Weyl derivatives [41,27,42]:
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d|x|ﬂ¢(x)
g
-——[D¥ DFo]l, O<u=2, #1
2005(77,1/,/2)[ v b+ DEg] " K
=1-Ly 1
Cdx ¢ m= ’
\_d)’ ,LL=0

(38)
where DY are the left- and right-side Liouville-Weyl deriva-

tives,

L am (7 (9dg

D= I'(m-a) M . (E=x)aml?

Dt = m=[m]+1,

o am f #&)de
C(m—a)dx™), (x-&omh

(39)

where [---] means the integer part of the number (note that
D =*d/dx at u=1). H is the Hilbert transform operator,
17 ¢éd¢

H¢=7—T L x—¢ .

(40)

The definitions of d*/d|x|* at w=0 and u=1 appear as con-
tinuous limits of the general definition [first line of Eq. (38)]
for u—0 and pw— 1, respectively.

In Fourier space the operators of fractional derivatives
have a simple form:

[’

FDo)= | drexplik)DS b= (Fi“d0), (41)

—00

where F denotes the Fourier transform operation, (Ab(k) is the
Fourier transform of ¢(x), and

(Fik)*= |k|“exp< ¥ %sgn k) .
Since

F(Hp) =i sgn kb, (42)

then, with the use of Egs. (38)—(42) we get an expression,
which is valid for the Fourier transform of the Riesz frac-
tional derivative for all a’s:

d“¢\ o)
F<d|x|a> - |k| ¢ (43)

We note here that the Riesz derivative of the order 2 coin-
cides with the second integer derivative. However, the first
Riesz derivative does not coincide with the first integer de-
rivative; moreover, the zero order Riesz derivative acting on
some function ¢ gives —¢. The latter property will be used in
what follows.

Equation (37) is subject to the initial condition f(x,#=0)
=8(x). Setting p(a)=38(@—2) in Eq. (37), we arrive at the
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usual diffusion equation. Setting p(a)=8a-a), 0< qp=2,
we arrive at the space-fractional diffusion equation in a
“modified” form [3],

P gf Pf

~_-_p —L. 44
dlx|?%0 ot “09x2 (“44)

with D, =D/ =%, With ay=2 we arrive at the usual diffu-
sion equation due to the property of zeroth order Riesz de-
rivative; see the third line in Eq. (38). Equation (44) is
equivalent to the “natural” form of the space-fractional dif-
fusion equation,

ot

ar - 0g|x|w’

(45)

Indeed, applying the Fourier transform to Egs. (44) and (45),

f(k,t) =[” dxe™f(x,t), and noting Eq. (43) we get from both
equations

Jle,t) = exp(= D K1), (46)

which is the characteristic function of the Lévy stable pro-
cess [43].

Let us return to the distributed-order Eq. (37). Applying to
it the Fourier transform, we get the characteristic function

flk,r) = exp[— %RM(k)] , (47)
where
2
Ry (k) :f dap(a)(|k|)~. (48)
0

It is interesting to note that Eq. (47) is the same as the equa-
tion for the Fourier transform of the solution of space-
fractional distributed-order diffusion equation in natural
form, if we replace Ry (k) by R(k)=[jdap(a)(|k|l); see Eq.
(44) in [12]. We already mentioned the similar property of
the time fractional solution; see Eqgs. (11) and (12) in Sec. IL.
Note that the solution of Eq. (37) is normalized:
JZdxf(x,0)=£(0,0)=1.

In what follows, we will be interested in (i) the probabil-
ity density to stay at the origin, which reads as

©

dif(k,1), (49)

—o0

0,1 =

and (ii) fractional-order moments of the PDF, which are
given by

(x(0)]*) = f dx|x|?f(x,1). (50)

B. Generic case of double-order equation

In what follows we consider the following form of the
weight function [compare with Eq. (16)]:
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pla)=p,Sla-a)+pda-2), 0<a <2. (51)

Insert Eq. (51) into Egs. (37), change the notation «a; to a,
and denote D/p,=D' — D, (p,/p,)[>~*=C,. Then, Eq. (37)
takes the form [3]

(1-c f‘“)&f_ Ff

Yol ) ar T ax®

(52)

whose solution with the initial condition f(x,0)=4(x) is
given by the characteristic function

D Kt )

—_— 53
1+ C k> (53)

flk,t) = exp(—
For the first time Eq. (52) was considered in Ref. [7], where
the proof of positivity of the solution was also given. The
underlying stochastic process is Markovian, and Eq. (53)
shows that its PDF is infinitely divisible [24]. This process
can be visualized in discrete time t=1,2,..., n as a sum of
independent jumps, each with the characteristic function
f(k,1) given by Eq. (53), for its PDF.

The inverse Fourier transform of Eq. (53) cannot be per-
formed analytically. However, we observe that at k large
enough (for small |x|), K, |k|*~*>1, the characteristic func-
tion has the form

Flk,t) = exp<— C2|k|“t), (54)

i.e., it corresponds to the characteristic function of the Lévy
stable distribution, compare Eq. (46). However, the asymp-
totics of the PDF at large x is determined by the first nonana-
lytical term in the expansion of Eq. (53) at k—0, that is by
DC ,t|k|*=%. By making the inverse Fourier transformation of
this term and using the Abel method of summation of an
improper integral [44,45], we get

I'(5 = a)sin(ma/2) DC ¢
FEE)

flen) = o — 0. (55)
Since 0<a<2, the Lévy distribution is truncated by a
power law with a power between 3 and 5. Thus the solution
of Eq. (52) has a finite second moment and, according to the
central limit theorem (slowly!) converges to a Gaussian. The
peculiarities of the convergence are considered below.
Probability density to stay at the origin.We remind that
for the Lévy stable law with index « the probability density
to stay at the origin is obtained by inserting Eq. (46) into Eq.
(49):
£0,0) = M(Da 1)V, (56)
Ty 0
In the case of our double-order Eq. (52) this probability is
obtained by inserting Eq. (53) into Eq. (49). The integral is
evaluated numerically. It is convenient to observe the con-
vergence to the Gaussian case in the course of time by plot-
ting f(0,7) vs time in a log-log scale. The result of numerical
calculation is shown in Fig. 7. Here, the probability density
to stay at the origin is shown by the solid line. The dashed-
dotted and dashed lines demonstrate the probability density
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T T T T T T T T
3+ 2.0 4
1.8
L 16 +
2 ®
14
1k 12 .
~
-~ 1.0
Q\ 32101234
< Of =
s
o
~ 1t 4
2+ g

3 2 1 0 1 2 3 4
/ngf

FIG. 7. Solid curve: probability density to stay at the origin
obtained by numerical integration of Eq. (53) at a=1 (Cauchy dis-
tribution), D=C=1. The dashed-dotted line has the slope corre-
sponding to the Cauchy density, f(0,7)~¢'. Dashed line has a
slope corresponding to the Gaussian distribution, £(0,f) ~¢~"2. The
inset demonstrates a.(f) obtained from the slope of the solid curve
at each time instant.

to stay at the origin for the Cauchy and Gaussian distribu-
tions, respectively. One can clearly see the transition from
Lévy behavior to a Gaussian behavior. By analogy with Sec.
II, we can plot « as a function of ¢, which is obtained from
the instant slope of the solid line, that is, f(0,7) ~ ¢ /%),
However, in contrast with Sec. II, it is not possible to ap-
proximate the PDF f(x,r) with the Lévy stable PDF with g
varying in time. The reason lies in the asymptotics, Eq. (55),
which is steeper than the asymptotics of the Lévy stable PDF
decaying as |x|7!7¢,

Fractional-order moments. Now, we turn to the moments
of the PDF. At first we note that for the power-law truncated
Lévy process whose characteristic function is given by Eq.
(53) the second moment is finite and displays normal Gauss-
ian diffusion,

Pfk,t)

wo=- 75|

=2Dt. (57)

However, fractional moments of order ¢<<2 demonstrate
anomalous non-Gaussian behavior at short times, as we will
see below. We remind that for the stable process of the Lévy
index « with the characteristic function Eq. (46) the

fractional-order moment behaves as [46]
(x| =A(g,@)(DD)?*, 0<g<a<2, (58)

where
2 . [(mq q
A(g,a) = —sin|l — |[T'(1 +g)I'| 1 = = |.
mq 2 o

Introducing the root of the order 2/¢g of the gth moment (to
have a natural analog for the nonexisting second moment),
M, (1) = (|x()|)*4, (59)

we get the for the Lévy stable process from Eq. (58),
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FIG. 8. Left panel: The root of the order 2/¢g of the gth moment, Eq. (59), is shown as a function of 7 by dotted lines for g=2.0, 1.5, 1.0,

and 0.5 (lines 1, 2, 3, and 4, respectively). Here, as in Fig. 7, a=1,

D=1,

C,=1. The dashed and dashed-dotted lines have tangent of

the slope equal to 1 and 2, respectively. Right panel: the quantity «,() defined in Eq. (61) is shown by solid lines 1, 2, 3, and 4 for the same
q values as in the left panel. The dashed-dotted line demonstrates a, from the inset of Fig. 7.

M (t;a) = [A(q, )9, (60)

that is, this quantity grows faster for a<<2 than in the Gauss-
ian normal diffusion case, Mq(t;2)0<t, a=2. In physics lit-
erature this property of fractional-order moments of the Lévy
stable process sometimes is attributed to the phenomenon of
superdiffusion, that is, the diffusion which is faster than the
normal Gaussian diffusion [1]. For Lévy flights the quantity
M,(t; @), Eq. (59), being plotted in a log-log scale, is de-
picted by a straight line with the tangent of the slope equal to
2/, which for a<<2 is steeper than for the Gaussian case.
For our power-law truncated Lévy flights the quantity
M,(t;a) is shown in Fig. 8, left panel, for g=2.0, 1.5, 1.0,
and 0.5 in a log-log scale. For g=2 the tangent of the slope is
equal to 1 for all times, which is in agreement with Eq. (57).
For order less than 2 the root of the gth moment exhibits
steeper slope that is superdiffusive behavior. This property is
also demonstrated in a different way in the right panel of Fig.
8. The function a,(f) shown here is given by

2
d[logo M (t:c))/d(logg 1)

a ()= (61)

At short times a,(#) <2. This is the manifestation of a tran-
sient superdiffusive behavior, which turns into normal behav-
ior in the course of time. Thus we have a decelerating su-
perdiffusion. If we take the value of g less than « (g<1 for
the process shown in Fig. 8) then we observe that at very
short times «,(t)= a, see the curve 4 for ¢g=0.5. This is a
demonstration of a “truly” Lévy behavior at short times of
the process considered. Interestingly, the function aq 5() is
very similar to the function a.x(r) shown in the inset of Fig.
7 and also depicted in the right panel by the dashed-dotted
line.

The property of fractional-order moments to exhibit
anomalous non-Gaussian behavior at short times has been
recently found for the exponentially truncated Lévy flights
[47]. The consequences of this result are the multiscaling
properties of the process. Our result confirms this finding and
allows us to make the hypothesis that such Lévy-like behav-

ior at small times is inherent for fractional moments of trun-
cated Lévy flights irrespective of the way of truncation.

Time evolution of the PDF. It is interesting to follow the
transition from Lévy-like to Gaussian behavior by looking at
the evolution of the PDF in time. The PDF obtained numeri-
cally by inverse Fourier transform of Eq. (53) is shown in
Figs. 9-11. As in previous figures, we take a=1, thus we
expect to observe the transition of the Cauchy density (or, to
be more precise, power-law truncated Cauchy density) into
the Gaussian density.

In Fig. 9 the PDF at small time is shown in linear, log-
linear, and log-log scale on the left, middle, and right panels,
respectively. In the left and right panels the thick solid line
showing the shape of the PDF almost completely coincides
with the shape of the Cauchy distribution, such that the de-
viations cannot be visible. The Gaussian distribution is
shown here by the dashed line. From the left and middle
panels one can see that at the beginning of evolution that is
at times small enough the PDF is very close to the Cauchy
density. This is true, but for the central part of the PDF,
which is only shown in linear and log-linear scales. Looking
at the log-log scale (right panel) one can see the deviations
from the Cauchy law with x increasing and finally at large x
the x™* asymptotics of the truncated Cauchy distribution, Eq.
(55).

Figure 10 shows the evolution from Cauchy to Gaussian
PDF at intermediate times in linear scale. In the left panel the
PDF is still close to the Cauchy PDF, however, one can al-
ready see the deviation in the central part. In the middle
panel the deviation from the Cauchy density is large, and at
the same time the PDF is still far from the Gaussian density.
With time increasing (right panel) the PDF becomes closer to
Gaussian.

In Fig. 11 the PDF at long time is shown in linear, log-
linear, and log-log scales on the left, middle, and right pan-
els, respectively. On the left (linear scale) the PDF (almost)
coincides with the Gaussian PDF. Looking at the middle
panel (log-linear scale) one can see that such a coincidence
takes place in the central part of the PDF only, because at
larger x the long tail of the PDF is observed. From the right
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FIG. 9. Thick solid line: PDF f(x,7) obtained by numerical inverse Fourier transform of Eq. (53) at small time r=0.001 is shown from

left to right in linear, log-linear, and log-log scale. Here a=1,

D=1, C,=1. In the left and middle panels the shape of the Cauchy density

almost completely coincides with the PDF depicted by solid line. The Gaussian density at the same time instant is shown here by dashed line.
In the right panel the dashed-dotted line indicates the Cauchy density with the tangent of the slope equal —2 and the thin solid line indicates

the asymptotics, Eq. (55), with the slope —4.

panel (log-log scale) it is seen that the central Gaussian part
is sewn with the power law asymptotics decaying as x™*.

Summarizing the results shown in Figs. 9-11, the evolu-
tion of the PDF is as follows. At short times the PDF has a
Cauchy shape in the central part and steeper x™* asymptotics.
At intermediate times there is a transition from Cauchy shape
to the Gaussian shape in the central part. At long times the
Gaussian profile is formed in the central part of the PDF
whereas the asymptotics is still governed by x™* power law.
With further time increasing the central Gaussian part slowly
enlarges and, respectively, the beginning of x™* asymptotics
is shifted to the larger x values. We note that, different from
the subdiffusion case, the PDF at intermediate times is not
correctly described by the effective exponent a.u(z), but
shows a more complex behavior, being a combination of the
Gaussian (long-time) and Lévy (short-time) ones.

V. DISCUSSION

We point to some possible applications of the power law
truncated Lévy flights. In Ref. [48] the fluctuations of float-
ing potential and poloidal electric field have been studied in
the boundary plasma of ADITYA tokamak by measuring the
probability density to stay at the origin. The transition from
the Lévy behavior to Gaussian behavior has been detected.
The results were compared with the model of exponentially

truncated Lévy flights. However, the very slow convergence
to the Gaussian PDF noted in the paper may point to a power
law truncation. Actually, Lévy statistics in plasma fluctua-
tions has been also reported for stellarators URAGAN-3M
[49] and Heliotron J [50]. The transition from a non-
Gaussian statistics with a power-law asymptotics at small
time scales to a Gaussian one at large time scales in the
central part of the PDF was also reported for plasma density
fluctuations in the scrape-off layer plasma of the tokamak
HYBTOK-II [51]. We suggest it would be reasonable to re-
vise the analysis of the available plasma data in order to find
which truncation procedure seems more adequate.

As another example, a Lévy flight truncated by a faster
decaying power law is a much better model for the behavior
of commodity prices. Indeed, the discussion in Ref. [52]
shows that the cumulative distribution function of cotton
prices may correspond to a power-law behavior of 1—F(x)
= [7f(x)dxocx~* with the power a=1.7 in its middle part and
the far tail decaying as a power law 1-F(x)*x™? with 8
= 3. Thus our equation (which is definitely the simplest form
of the equation for truncated Lévy flights) adequately de-
scribes this very interesting case giving $=3.3. It is highly
probable that fractional equations of the type considered here
might be a valuable tool in economic research.

One more economical example comes from the analysis
of relative changes of stock prices, which over a fixed time
interval follow a Lévy stable distribution in the central re-
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FIG. 10. PDF f(x,7) at intermediate times in linear scale. Here a=1,
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X

D=1, C,=1. Solid line: PDF obtained by inverse Fourier

transformation of Eq. (53). Dashed-dotted line: the Cauchy density. Dashed line: the Gaussian density.
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FIG. 11. The PDF f(x,7) at long times, from left to right: linear, log-linear, and log-log scale. Dashed and dashed-dotted line indicate the
Gaussian and Cauchy distribution, respectively. The thin solid line in the right panel indicates the asymptotics x™*, Eq. (55).

gion with inverse power law tails [53]. The index « of the
Lévy region is approximately 1.4 [54] and the exponent v of
the decay of the tails is typically somewhat less than 4
[55,56]. The high-resolution analysis of a database consisting
of 132000 values of the S&P 500 index taken at 10 min
intervals gives v=3.65*0.21 [57]. According to our model,
v=5-a=3.6, which nicely agrees with this empirical find-
ing.

VI. SUMMARY

The class of diffusion equations with distributed order
derivatives allows us to describe the diffusion processes
which are not characterized by a unique exponent related to
the order of fractional differentiation or the growth of the
mean squared displacement. In the present paper we consider
the properties of two diffusion equations, namely, the equa-
tion with the distributed order Riemann-Liouville time frac-
tional derivative (accelerating subdiffusion) and the equation
with the distributed order Riesz space-fractional derivative
(decelerating superdiffusion). We call these two equations
modified distributed order diffusion equations in order to dis-
tinguish them from those introduced in Ref. [12]. Both equa-
tions describe processes which become less anomalous in the
course of time. As an important generic example of many
distributed orders we consider double-order equations in
both cases, containing one integer and one fractional-order
term, namely first derivative plus derivative of order less
than 1 in a time-fractional equation and second derivative
plus fractional of order less than 2 in a space-fractional equa-
tion. We study the evolution of the probability density to stay
in the origin f(0,7), the MSD (x*(¢)), and the PDF f(x,?)
itself. Finally, we also provide a discussion about possible
applications.

The double-order time fractional diffusion equation de-
scribes a subdiffusion process which becomes less subdiffu-
sive (or, in other words, more normal) in the course of time,

that is, accelerating subdiffusion. The probability density to
stay in the origin exhibits a transition from slow to a faster
decay. The MSD demonstrates the transition from the growth
characterized by a smaller exponent to the growth with a
larger exponent. The PDF evolves from the solution of a
single-order diffusion equation with a smaller exponent to
the solution of a single-order equation with a larger expo-
nent. We have found that the evolution process can be effec-
tively described by the solution of a single order time-
fractional diffusion equation with a fractional exponent
varying with time, and we provide a good fit to the solution
of a double-order equation by the solution of a single-order
equation with time-dependent fractional exponent.

The double-order space fractional diffusion equation de-
scribes power-law truncated Lévy flights, that is, a random
process showing a slow convergence to a Gaussian, but hav-
ing Lévy-like behavior at short times. This behavior mani-
fests itself in the non-Gaussian Lévy scaling of the probabil-
ity density to stay at the origin and in superdiffusive behavior
of fractional moments of the order less than 2. At the same
time, the MSD exhibits normal growth, i.e., linear in time.
The PDF evolves as follows. At short times the central part
of the PDF has a Lévy-stable shape, whereas the asymptotics
decays with the power law but faster than the decay of the
Lévy-stable law. At long times the central part of the PDF
approaches more and more to Gaussian shape, however, the
asymptotics decay with the same power law. With time in-
creasing the Gaussian central part enlarges.
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